版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、在實(shí)際的應(yīng)用中,隨著經(jīng)濟(jì)和社會的快速發(fā)展,人們對圖像的要求越來越高。但是,由于硬件設(shè)備和成像技術(shù)的限制,得到的圖像很難達(dá)到人們的要求。如果想要從硬件設(shè)備上來提高成像質(zhì)量,需要的成本和代價(jià)都比較高。隨著軟件技術(shù)科技的迅速發(fā)展,人們希望從軟件方面來實(shí)現(xiàn)圖像分辨率的提高,代替硬件設(shè)備上的改進(jìn),這種在軟件上提高圖像質(zhì)量的技術(shù)稱為圖像超分辨率重建技術(shù)。本文從單幅重建的不同角度出發(fā),對重建算法進(jìn)行各個(gè)方面的改進(jìn),主要的研究內(nèi)容和創(chuàng)新點(diǎn)如下:
2、 ?。?)圖像超分辨率重建在成像觀測模型中是一個(gè)逆問題,具有不適定的特性,得到的解是不唯一的。在本文中我們把超分辨率重建看做一個(gè)目標(biāo)優(yōu)化問題,提出了一種基于遺傳算法和正則先驗(yàn)?zāi)P偷膱D像超分辨率重建算法。超分辨率重建算法中構(gòu)建的正則先驗(yàn)?zāi)P鸵话闶峭ㄟ^一步步地迭代來求解,得到的是局部范圍內(nèi)的最優(yōu)解。為了擴(kuò)大算法的搜索范圍,我們在迭代的求解過程中引入遺傳算法,提高的算法的搜索能力。本算法主要是分成以下兩步來實(shí)現(xiàn)的:第一步,首先將非局部均值濾波
3、和全變差引入到基于自適應(yīng)的稀疏域的稀疏表示中來構(gòu)建數(shù)學(xué)模型。第二步,利用迭代收縮閾值法求解上一步中構(gòu)建的數(shù)學(xué)模型,在迭代一定次數(shù)后,也就是估計(jì)值接近局部最優(yōu)解時(shí),引入遺傳算法來跳出局部搜索范圍。通過對比實(shí)驗(yàn),表明了我們提出的算法無論是從理論數(shù)據(jù)上還是視覺上,都獲得了較好的重建效果。
?。?)這一部分中,我們提出了一種基于稀疏表示系數(shù)聚類的圖像超分辨率重建算法。稀疏表示能夠?qū)D像的能量集中表現(xiàn)在極少的原子上,將圖像用另一種形式簡潔
4、的表示出來,這種簡潔的形式更適于圖像的聚類。在本文中我們首先用主成分分析來得到低分辨率圖像的稀疏字典和相應(yīng)的稀疏表示系數(shù);然后,用K-mea ns對稀疏表示系數(shù)聚類,將低分辨率和高分辨率圖像的特征空間分成若干個(gè)子空間,分別求出子特征空間的對應(yīng)關(guān)系。相對于以往的直接在圖像空間上聚類的算法,我們方法能夠很好的恢復(fù)出高頻信息,從理論數(shù)據(jù)和視覺上,都要優(yōu)于其他的一些算法。
(3)這一部分是對基于稀疏表示系數(shù)聚類的圖像超分辨率重建的改進(jìn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單幅圖像超分辨率重建算法研究.pdf
- 基于稀疏表示的單幅圖像超分辨率重建研究.pdf
- 基于學(xué)習(xí)的單幅圖像超分辨率方法研究.pdf
- 基于壓縮感知的單幅圖像超分辨率重建算法研究.pdf
- 基于自相似的單幅圖像超分辨率重建研究.pdf
- 基于學(xué)習(xí)的超分辨率圖像重建研究
- 單幅圖像超分辨率重建技術(shù)研究.pdf
- 基于多尺度相似結(jié)構(gòu)學(xué)習(xí)的單幅圖像超分辨率重建.pdf
- 基于稀疏表示的單幅圖像超分辨率重建算法研究.pdf
- 基于學(xué)習(xí)的單幅圖像超分辨率重建的若干關(guān)鍵問題研究.pdf
- 基于深度學(xué)習(xí)的圖像超分辨率重建研究
- 基于學(xué)習(xí)的超分辨率圖像重建研究.pdf
- 基于深度學(xué)習(xí)的圖像超分辨率重建研究
- 基于學(xué)習(xí)的單幅圖像超分辨率技術(shù)研究.pdf
- 基于MAP的單幅圖像非盲超分辨率重建算法研究.pdf
- 基于稀疏表示的單幅彩色圖像超分辨率重建方法研究.pdf
- 基于自相似性的單幅圖像超分辨率重建算法研究.pdf
- 基于學(xué)習(xí)的圖像超分辨率重建算法研究.pdf
- 基于圖像類推的單幅圖像超分辨率算法.pdf
- 基于單幅圖像超分辨率復(fù)原算法研究.pdf
評論
0/150
提交評論