版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> Man and His Environment</p><p> Body heat losses. The human body, like any other heat engine , consumes fuel(food) to generate heat. The heat leaves the body in the form of radiation and convecti
2、on from the skin ,evaporation of moisture from pores in the skin ,and in the breath. Radiation and convection occur only if the air temperature or the surroundings are below blood heat. If approaching or above this condi
3、tion, the sweat glands expand and heat is rejected solely by evaporation. High relative humidity coupled with high te</p><p> At low temperatures, the blood vessels near the surface of the skin close up, le
4、aving the epidermis dry and acting as an insulator. Shivering is a provision of nature to cause muscular activity and hence increase blood circulation.</p><p> Human comfort . Four factors affect comfort: a
5、ir temperature, radiation, relative humidity, and air movement. Most thermometers measure air temperature but are not influenced by infrared (long-wave) radiation, because their glass envelopes are opaque to such radiati
6、on. The human body, however , may receive heat from a radiant source ; if so, air temperature must be reduced if body heat release is to remain normal. Conversely , if the body is losing heat by radiation to its surround
7、ings , such as</p><p> The study of radiant effects is complex . The mean radiant temperature in an enclosed space is the mean of all the surfaces bounding the space in proportion to their areas and tempera
8、ture , the latter being calculable from the known conductivity of the materials and an assumed temperature difference between inside and outside . This calculation gives only an approximation ; such factors as the effect
9、 of a large area of window , which may be cold in winter and hot in summer, produce variations in</p><p> A close approximation to mean radiant temperature may be obtained by the use of globe thermometer (F
10、if.1), consisting of an ordinary thermometer in a blackened , hollow metal sphere about six inches (15 centimeters) in diameter. If suspended in an enclosure in which all surfaces are at the same temperature as the air ,
11、 the globe thermometer reads the same as an ordinary thermometer , regardless of air movement; but ,if the surface and air temperatures differ ,the globe becomes warmer or cooler i</p><p> Research in great
12、 Britain on factory workers doing light sedentary work established that globe thermometer temperatures of 62-68°F ( 17-20°C) and air temperatures of 60-68°F (16-20°C) were regarded as comfortable . Pe
13、rsons seated at rest required temperatures a few degrees higher, as did those persons who were used to warmer climates.</p><p> The above criteria take no account of humidity. In colder climates, such as in
14、 northern Europe ,variations in relative humidity within the range 40-70 percent have little effect on comfort. In warmer climates ,in which sweating plays an important part in heat release ,humidity must be taken into a
15、ccount .The effective temperature scale was developed in the United States in a long series of subjective tests in carefully conditioned rooms ,from which lines of equal comfort or discomfort-effective </p><p&
16、gt; The effective temperature scale takes no account of radiation. This can be included simply by using a globe thermometer instead of an ordinary thermometer. The scale so derived is the corrected effective temperature
17、 scale, which is no longer widely used. Another scale, resultant temperature, takes account of air temperature ,radiation, and air speed. It is measured by a small blackened globe and is more sensitive to air temperature
18、 and movement and less to radiation than the globe thermometer. T</p><p> Another scale is known as environmental temperature; it is weighted in that it is equivalent to two-thirds mean radiant temperature
19、and one-third air temperature. It takes no account of air movement or humidity. Its application is in the study of the thermal properties of buildings.</p><p> Other influences affecting comfort .It is poss
20、ible to enumerate here only a few of the other factors affecting comfort.</p><p> Quality of heat radiation. It has long been known that the human body derives greater comfort when the air temperature is lo
21、wer than that of the surrounding wall and other surfaces. This probably accounts for the comfort of the paneled room common in the 18th and 19th centuries; even though the source of heat was no more than an open fire, th
22、e surfaces of the timber paneling were quickly warmed by radiation, while the air drawn in by the large flue ensured a low reading of the thermometer.</p><p> Radiant heating makes use of extended surfaces
23、 of wall or ceiling heated to some 100°F (38°C) or floor to 75°F (24°C). Air temperature may then be some 5°F (3°C) below that required with a convective system . Unfortunately, the effect o
24、f low-temperature radiation on the skin, coupled with the lack of air movement from convection currents, produces an enervating condition. Consequently, it has been suggested that a ventilation system accompany this form
25、 of heating to stimulate a freshening atmosp</p><p> Radiant heat sources employing higher temperatures, such as infrared panels or luminous reflector elements electrically heated, present the problem of di
26、rectional effects; a certain intensity acceptable on the feet may be uncomfortable if directed at the head. At an air temperature of 50°F (10°C)or under ,it is believed impossible to create a feeling of comfort
27、, no matter how great the supply of radiant heat. These two considerations are bound up in one ,namely that as a means of distribution of</p><p> The effect of radiant heat sources on the human body require
28、s special attention. The great merit of the open coal fire was its wide range and constant variation of radiant wavelength, from the high incandescent parts of the fuel and flames to the dull, low-temperature radiation f
29、rom the surrounding firebrick and cast-iron or tile decoration. Although the fireplace is decried as an inefficient item of heating equipment, it does have beneficial effects, on a limited scale, room by room. It is open
30、</p><p> The unrelieved monotony of a certain limited range of wavelengths, as from a gas fire or electric heater, can cause dryness and intense irritation of the skin. The human system seems to need stimul
31、ation from constantly varying conditions.</p><p> Temperature gradients. Because hot air rises, a system of heating relying on warming of air for heat distribution results in a higher temperature at the cei
32、ling than near the floor. An exception is a floor-heating system, in which convection from the floor is balanced by radiation at the floor level.</p><p> In the case of a large open space, such as a factory
33、 , a system that minimizes temperature gradient is more efficient than one in which the effect is disregarded. Thus ,the once common use of overhead pipes produced inordinately high temperature gradients and high roof lo
34、sses. </p><p> Radiant-heating systems in general minimize temperature gradients. Forced-convection systems are preferable to natural convection. Radiators employing extended surfaces below windows give lo
35、wer air temperature rise than those concentrated on inner walls.</p><p> Uniformity of condition. In an air-conditioned building, air temperatures differ little from those of surrounding surface. Thus , a s
36、tate of thermometric uniformity may exist, except insofar as air movement is concerned. Comfort, as defined by a certain range of effective temperature, is likely to be achieved, but it is possible that the human body co
37、ntinuously so enveloped may suffer from not only physiological but also psychological enervation.</p><p> Air movement. The effective temperature depends on air velocity. The higher the air motion, the lowe
38、r the effective temperature for a given temperature and relative humidity. An effective temperature of 70°F (21°C)with an air speed of 30 feet (nine meters ) per minute, for instance , falls to 60°F (16
39、76;C) at an air speed of 600 feet (180meters) per minute. The variation diminishes with increasing temperature until, at blood heat , air motion ceases to have any effect. It is for this reason that i</p><p>
40、; Air movement up to 50 feet (15 meters) per minute in an occupied space is usually considered acceptable and desirable, rising locally perhaps to 60 feet (18 meters) per minute and producing some degree of turbulence.
41、These is a much stronger risk of drafts at higher air speeds.</p><p> The problem for the air-conditioning engineer is often to find ways of introducing large quantities of air into a space while keeping ve
42、locities in the occupied region within acceptable limits. Raising the relative humidity brings a higher effective temperature, which may allow a slightly higher air movement.</p><p> To summarize, it will b
43、e seen that the four factors involved in comfort, namely, air temperature , radiation, humidity, and air motion, are largely interdependent. These is no single instrument by which they may be measured collectively, yet t
44、he human body can quickly assess whether or not it is in a state of comfort . That state may be result of any of the possible combinations of these factors.</p><p> Architectural Acoustics</p><p&
45、gt; The production and reception of sound in closed spaces such as lecture and concert halls, theatres, church auditoriums, school classrooms, and home constitute the subject of architectural acoustics.</p><p
46、> When a sound source is excited in a closed room, the resultant sound intensity at any point depends not solely on the sound waves reaching that point directly from the source but also on the arrival there of sound
47、that has been reflected from the walls and other surfaces of the room. For rooms of the size encountered in ordinary experience the sound intensity builds up rather quickly, and the phenomenon known as reverberation ensu
48、es. If the room surfaces were perfect reflectors and the source we</p><p> and to take account of the absorption in the air of the room.</p><p> The optimum acoustical conditions in a room dep
49、end on its intended use. For satisfactory reception of speech, a relatively short reverberation time is obviously essential for adequate articulation. With long reverberation time successive utterances overlap, unless th
50、e speech is abnormally slow. For auditoriums with volume of the order of 6*103 cubic meters to 14*103 cubic meters, experiments suggest a maximum reverberation time of about 2.5 seconds for satisfactory articulation. For
51、 best listeni</p><p> Sabine’s law indicates that the reverberation time for a room of given size can be controlled by appropriate changes in the absorption by the surfaces. Many kinds of acoustic absorbing
52、 materials exist to meet a wide variety of needs, both for permanent installation to meet the original design requirements and for portable installations to provide for flexibility in use.</p><p> In additi
53、on to the overall reverberation, and indeed as a contributing factor to it, the transmission of the sound back and forth between the walls, floor, and ceiling of a room stimulates the development of the normal modes ment
54、ioned above. Hence a complicated sound pattern can result in which certain frequencies are accentuated, leading to discomfort and difficulty in hearing. The excitation of the most troublesome normal modes can be material
55、ly reduced by the use of absorbing material, and al</p><p> Modern architectural acoustics technology uses many special techniques, including the free use of sound reinforcing systems with loudspeakers plac
56、ed at strategic points throughout the space. The optimum acoustic design of auditoriums as well as schoolrooms, business offices, residences, etc., reached a high level of efficiency in the 1960s and 1970s. Much of the s
57、uccess of modern room acoustic design is due to the use of computers. A simulated mode of a given hall can be introduced into a comput</p><p><b> 人類與他生活的環(huán)境</b></p><p> 身體熱量的損失:和其他熱
58、機(jī)一樣,人類的身體也需要通過消耗燃料(食物)來產(chǎn)生熱量。熱量離開身體的方式有:輻射,對(duì)流,皮膚毛孔水分的蒸發(fā)以及通過氣體的呼吸。只有當(dāng)空氣溫度或者周圍環(huán)境低于血熱時(shí),才會(huì)產(chǎn)生輻射和對(duì)流現(xiàn)象。當(dāng)周圍的環(huán)境溫度接近或超過時(shí),此時(shí)汗腺會(huì)擴(kuò)張,熱量只以蒸發(fā)的形式散失。越來越高的相對(duì)濕度和溫度將會(huì)使生活變的更加艱難。</p><p> 當(dāng)溫度很低的時(shí)候,血管水面附近的皮膚將會(huì)封閉的,只留下干燥的表皮和不能作為散失熱量的介
59、質(zhì)。寒戰(zhàn)是引起肌肉活動(dòng)的一種神經(jīng)反應(yīng),用來加快血液的循環(huán)。</p><p> 人類舒適性:空氣溫度、輻射、相對(duì)濕度、和空氣的流動(dòng)等四種因素影響著人類的舒適性。由于大多數(shù)的溫度計(jì)是不透明的,在測(cè)量空氣溫度時(shí)不受紅外線輻射的影響。人的身體可能從一個(gè)輻射源接收到熱量,在這種情況下,如果人的身體接收熱量正常,空氣的溫度將會(huì)降低。相反的,如果身體失去熱量并輻射到周圍的環(huán)境中,好比寒冷房間的墻壁,空氣溫度將提高到相同的層次
60、。</p><p> 輻射作用的研究是復(fù)雜的。在一個(gè)封閉的空間內(nèi),平均輻射溫度是所有邊界領(lǐng)域和空間表面的平均溫度,其中后者是從已知材料的傳導(dǎo)性以及內(nèi)外溫差計(jì)算假定的。這種計(jì)算給出的只是一種近似,作為一個(gè)大面積的窗口,這可能是冬冷夏熱,一個(gè)房間不同部位產(chǎn)生變化的影響因素。此外,人體本身是龐大的,不同的服裝反應(yīng)不同。溫暖空間的引進(jìn)及透過窗戶的陽(yáng)光進(jìn)一步復(fù)雜化了受熱表面。</p><p>
61、平均輻射溫度的近似值可能在全球的溫度計(jì)中使用(圖.1),其中一個(gè)普通的溫度計(jì)包括較暗,直徑大約6英寸(15厘米)的空心金屬球。如果在一個(gè)機(jī)柜中,所有表面的溫度是相同的,無論空氣流動(dòng),地球溫度計(jì)讀數(shù)作為一個(gè)普通的溫度計(jì)是一樣的,但是,如果表面和空氣的溫度不同時(shí),全球變暖或變冷中相應(yīng)的影響著溫度的輻射。由于全球和空氣的溫度,平均輻射溫度可能被計(jì)算出來。</p><p> 在英國(guó),一項(xiàng)研究表明,工廠工人坐著做輕工作時(shí)
62、,全球氣溫溫度計(jì)在62°F -68°F (17°C-20°C)和60°F -68°F(16°C -20°C)的空氣溫度被認(rèn)為是舒適的。休息時(shí)所需要的溫度幾度更高,那些被用來溫暖氣候的人也是一樣。</p><p> 上述標(biāo)準(zhǔn)不考慮空氣濕度的影響。例如在北歐寒冷的時(shí)候,相對(duì)濕度在40-70%范圍內(nèi)變化對(duì)舒適性的影響不大。在溫暖的氣候,其
63、中扮演一個(gè)出汗散熱的重要組成部分,濕度必須考慮。有效溫標(biāo)在美國(guó)被精心制定了一系列主觀測(cè)試的客房,從平等舒適或不適中導(dǎo)出了有效溫度線。在限制范圍內(nèi),個(gè)人感覺舒適可以指明,建立所謂的“舒適區(qū)”,這不同于夏季和冬季。</p><p> 有效溫標(biāo)不考慮輻射的影響。這可以包括只需使用地球儀溫度計(jì)代替普通的,一方面得到的是更正過的有效溫度范圍,已不再?gòu)V泛使用。另一方面,需要考慮空氣溫度、輻射、風(fēng)速。它是通過用一個(gè)對(duì)空氣溫度
64、和運(yùn)動(dòng)更為敏感,輻射更小的全球溫度計(jì)來測(cè)量的??紤]濕度產(chǎn)生的濕溫度用wet-bulb溫度計(jì)-為確定相對(duì)濕度的有用工具,它由一塊浸水的布包裹著一個(gè)溫度計(jì)和一個(gè)燈泡組成。蒸發(fā)導(dǎo)致冷卻, 冷卻量根據(jù)相對(duì)濕度確定的。</p><p> 另一方面被稱之為環(huán)境溫度,它相當(dāng)于三分之二平均輻射溫度和三分之一的空氣溫度之和,沒有考慮空氣流動(dòng)或濕度的影響,它主要運(yùn)用在對(duì)建筑物熱性能的研究上。</p><p>
65、; 其他因素的影響:在這里只列舉了一些其他因素對(duì)舒適性的影響。</p><p> 熱輻射的質(zhì)量。人們?cè)缇椭?,源于人體更加舒適時(shí)空氣的溫度比周圍的墻壁和其他的表面低。這項(xiàng)墻面的大廳在18世紀(jì)和19世紀(jì)沒有考慮舒適性的要求,即使熱源沒有比明火多,木材鑲板表面通過輻射很快的變暖,同時(shí),空氣中的煙霧確保了溫度計(jì)讀數(shù)的偏低。</p><p> 由于輻射加熱使得墻體表面或天花板繼續(xù)加熱到約10
66、0°F(38°C)或地板75°F(24°C)??諝鉁囟仍?°F(3°C)可能低于形成熱量對(duì)流時(shí)的溫度。不幸的是,影響皮膚的是低溫輻射,加上空氣缺乏流通,形成一個(gè)微弱的條件。因此,有人認(rèn)為,伴隨著這個(gè)通風(fēng)系統(tǒng)的加熱,能夠形成清新的氣氛。</p><p> 如果采用紅外發(fā)光,反光板或電等加熱元件,輻射熱源溫度較高,此時(shí)產(chǎn)生定向的影響;人的頭腦指示他的腳接收
67、到了一定程度上令人不舒適的熱量。當(dāng)空氣的溫度在50°F(10°C)或以下,一般不能形成一個(gè)舒適的感覺,無論周圍有多大的熱源,一般不能形成一個(gè)舒適的感覺。作為一個(gè)熱量的傳遞方式,非常高的輻射熱源和非常低的輻射熱源本身不能夠令人滿意。</p><p> 需要特別注意輻射熱源時(shí)對(duì)人體的影響。開放型燃煤最大優(yōu)點(diǎn)是它的輻射范圍廣,輻射波長(zhǎng)不斷變化,從燃料和火焰外層,從周圍的耐火磚和鑄鐵或瓷磚裝飾部分?jǐn)U
68、散。雖然壁爐作為加熱設(shè)備由于它的低效遭到譴責(zé),但在有限的規(guī)模起到了作用,比如說會(huì)議室。它是一個(gè)開放的問題,無論是在人體皮膚上的感官刺激和各種波長(zhǎng)的輻射效應(yīng)已作為一個(gè)整體進(jìn)行徹底的探索。</p><p> 長(zhǎng)此以往有限單調(diào)的波長(zhǎng)輻射,如煤氣爐或電加熱器,可引起皮膚干燥和強(qiáng)烈的刺激。因此,人類系統(tǒng)需要不斷變化條件的刺激。</p><p> 溫度梯度。由于熱空氣的上升,依靠空氣熱量分布的熱化
69、系統(tǒng)加溫導(dǎo)致在天花板的溫度比在地板周圍的高。一個(gè)另外是地板采暖系統(tǒng),從地板的對(duì)流由在地板水平的輻射平衡。</p><p> 在工廠等開放空間,最大限度地降低溫度梯度的系統(tǒng)容易忽視它的高效率。因此,一旦架空的管道使用時(shí)高溫差的熱損失產(chǎn)生紊亂。</p><p> 一般輻射供暖系統(tǒng)降低溫度梯度。強(qiáng)制對(duì)流系統(tǒng)是最好的自然對(duì)流。使用延長(zhǎng)表面的幅射器在窗口之下比集中于內(nèi)在墻溫度上升的慢。</
70、p><p> 條件的均一性。在一座有空調(diào)的建筑物中,溫度不同于它周圍的情況。因此,一個(gè)地區(qū)溫度計(jì)的統(tǒng)一性是存在的,除了一些模糊不清的空氣流動(dòng)。通過一定范圍內(nèi)的實(shí)感溫度定義舒適性是可以實(shí)現(xiàn)的,人體在很大程度上受到生理和心理上的壓力而受苦。</p><p> 空氣流動(dòng)。實(shí)感溫度取決于空氣流通的速度??諝饬鲃?dòng)速度越高,實(shí)感溫度和相對(duì)濕度越低。例如,當(dāng)空氣流通的速度在600英尺(180米)每分鐘時(shí)
71、,我們的實(shí)感溫度在60°F (16°C);當(dāng)空氣流通的速度在30英尺(9米)每分鐘時(shí),我們的實(shí)感溫度為70°F (21°C) 。當(dāng)溫度上升到人的體溫時(shí),空氣的流通不在隨著溫度的上升而變化。由于這個(gè)原因,在炎熱,擁擠的環(huán)境中提供了很少的緩和。</p><p> 在一個(gè)空間中,空氣流通的速率達(dá)到50英尺(15米)通常被認(rèn)為是可以接受的和可取的,當(dāng)上升到60英尺(18米)時(shí),將
72、產(chǎn)生某一程度的動(dòng)蕩。這是一個(gè)高速流通空氣存在的更大的風(fēng)險(xiǎn)。</p><p> 空調(diào)工程師的任務(wù)是找到將大量空氣引入進(jìn)一個(gè)空間的方式,并保持該區(qū)域的空氣流通在可以接受的范圍內(nèi)。通過提高空氣的相對(duì)濕度帶來較高的實(shí)感溫度,從而使實(shí)感溫度略高于空氣的流動(dòng)。</p><p> 總之,我們將看到影響舒適性的四個(gè)因素,即空氣溫度,輻射,濕度和空氣流動(dòng),在很大程度上是相互依存的。目前沒有任何單一的文書
73、,使他們可以集體的測(cè)量出來,但人體可以迅速評(píng)估它是否在舒適的狀態(tài)。該地區(qū)舒適性可能是這四項(xiàng)因素相互組合的結(jié)果。</p><p><b> 建筑聲學(xué)</b></p><p> 講座,音樂廳,劇院,教堂禮堂,學(xué)校教室和家庭等封閉的空間中聲音的產(chǎn)生和接收構(gòu)成了建筑聲學(xué)的內(nèi)容。</p><p> 在一個(gè)封閉的屋子中產(chǎn)生振動(dòng)發(fā)出聲音時(shí),屋內(nèi)任何一點(diǎn)
74、上接收到的聲音強(qiáng)度等于從聲源直接傳遞過來的加上從墻壁和屋子的其他表面反射的聲音。根據(jù)一般經(jīng)驗(yàn),迅速建立了房間的大小遇到聲音強(qiáng)度的概念,隨之而來的現(xiàn)象稱之為回蕩。假如房間的表面是理想的反射面且發(fā)出聲源的物體是固定功率的產(chǎn)品,這時(shí)聲音的強(qiáng)度將會(huì)無限期的增加,除了除去聲音在空氣中傳播引起的衰減。實(shí)際上,聲音總是被確定的所有表面吸收,并且可以防止聲音的衰減。但是。當(dāng)聲源停止時(shí),聲音強(qiáng)度的衰減是需要一定的時(shí)間,以便使聲音不被聽見。一個(gè)房間里平均聲
75、強(qiáng)從最開始衰減到原來強(qiáng)度的百萬分之一時(shí)所用的時(shí)間我們稱之為回蕩時(shí)間。通過實(shí)驗(yàn)得到了回蕩時(shí)間(T)直接的取決于屋子的體積和不同表面吸收聲音的影響。如果一個(gè)表面吸收少量的聲音能源稱為吸收能力A,總的吸收能力是所有室內(nèi)表面的吸收能力的整和。因此,如果在一個(gè)表面上的 30% 的聲能被反射,那么該表面的吸收能力為0.7。每平方米吸收的聲能等同于0.7個(gè)平方米完全被吸收的聲能。公制薩賓(薩賓,一個(gè)美國(guó)物理學(xué)者)相當(dāng)于一平方米完全吸收聲能。對(duì)應(yīng)的英國(guó)
76、單位使用平方英尺簡(jiǎn)單的認(rèn)作為薩賓。如果a是屋子內(nèi)所有表面的吸收能力,那</p><p> 在一個(gè)房間中最佳的聲學(xué)條件取決于它的用途。對(duì)于演講,為獲得滿意的接待,一個(gè)相對(duì)短的回蕩時(shí)間對(duì)清晰的發(fā)音顯得至關(guān)重要。當(dāng)演講者的語速比較的快,使得在回蕩時(shí)間久時(shí),就會(huì)有重音的現(xiàn)象。通過實(shí)驗(yàn)確定了6*103到14 *103 立方米容量的禮堂,令聽眾滿意的清晰發(fā)音的最大回蕩時(shí)間大約為2.5 秒。在這種條件下,為獲得最佳發(fā)音房間回
77、蕩時(shí)間應(yīng)在一秒鐘。這些能夠承擔(dān)一般噪音水平,只有大約 30分貝以上能聽得見。在大屋子(3*104立方米或更大的容量),無論回蕩時(shí)間如何短,不通過公共廣播系統(tǒng),不能夠聽到演講者的聲音。一個(gè)用于音樂的房間需要一個(gè)比較長(zhǎng)的回蕩時(shí)間甚至超過用于演講的房間,為音樂廳最宜的回蕩時(shí)間大約是1.9秒。因?yàn)槲盏淖兓苯优c頻率有關(guān),回蕩時(shí)間與之成反比。上述給出的是平均頻率為500HZ的情況。</p><p> 薩賓定律表明,對(duì)于
78、一個(gè)給定大小的空間回蕩時(shí)間可在吸收表面作適當(dāng)?shù)母淖儯瑸榱诉m應(yīng)各種各樣的需要,一些隔音材料的使用,在使用中對(duì)永久設(shè)施符合原始的設(shè)計(jì)要求和對(duì)便攜式的設(shè)施提供了靈活性。</p><p> 去了全部的回聲外,還有一個(gè)其他的因素,聲音在屋子的地板、墻壁和天花板上反復(fù)的傳播,影響了正常振蕩型的發(fā)展。因此,一個(gè)復(fù)雜的聲音模式可能會(huì)導(dǎo)致某些頻率的加劇,導(dǎo)致身體不適和聽覺有困難。最棘手的激勵(lì)源的模態(tài)物質(zhì)可以減少了吸波材料的使用,
79、并通過引入輕微的不規(guī)則的墻壁,以擺脫的并行現(xiàn)象。這些預(yù)防措施的聲音打破了常規(guī)模式,有助于使彌漫在整個(gè)空間有相同的聲能。</p><p> 現(xiàn)代的建筑音響學(xué)技術(shù)使用許多特別的技術(shù),包括使用各種聲音加強(qiáng)系統(tǒng)和擴(kuò)音設(shè)備,他們安放在空間里的重要位置上。最佳的禮堂以及教室,商務(wù)寫字樓,住宅等聲學(xué)設(shè)計(jì),在20世紀(jì)60年代和70年代達(dá)到了高效率的水平?,F(xiàn)代房間的聲學(xué)設(shè)計(jì)的成功在很大程度上是由于計(jì)算機(jī)的使用。一個(gè)給定大廳模擬模
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)生態(tài)環(huán)境建設(shè)與環(huán)境外交.pdf
- 生態(tài)環(huán)境與人類健康
- 內(nèi)部控制環(huán)境外文翻譯
- 成煤構(gòu)造環(huán)境外文翻譯
- 厄他培南對(duì)院內(nèi)生態(tài)環(huán)境的影響
- 高二地理生態(tài)環(huán)境問題與生態(tài)環(huán)境護(hù)
- 公共環(huán)境外文翻譯---- 當(dāng)?shù)丨h(huán)境的控制與公共機(jī)構(gòu)的擠出效應(yīng)
- 生態(tài)環(huán)境與保護(hù)論文
- 風(fēng)電與生態(tài)環(huán)境
- 厄他培南對(duì)院內(nèi)生態(tài)環(huán)境的影響資料
- 貓的搖籃后現(xiàn)代人類生態(tài)環(huán)境反思
- 生態(tài)環(huán)境問題
- 生態(tài)環(huán)境治理
- 設(shè)置php開發(fā)環(huán)境外文翻譯(綠皮書)
- 柞蠶生產(chǎn)與生態(tài)環(huán)境的關(guān)系
- FDI、環(huán)境規(guī)制與生態(tài)環(huán)境關(guān)系研究.pdf
- 水利政治與生態(tài)環(huán)境變遷
- 建筑與生態(tài)環(huán)境的關(guān)系探究
- 淺談綠色建筑與生態(tài)環(huán)境
- 生態(tài)環(huán)境的保護(hù)3
評(píng)論
0/150
提交評(píng)論