版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 本科畢業(yè)設(shè)計(jì)</b></p><p><b> 外文文獻(xiàn)及譯文</b></p><p> 文獻(xiàn)、資料題目:Designing Stable Control Loops</p><p> 文獻(xiàn)、資料來源:期刊</p><p> 文獻(xiàn)、資料發(fā)表(出版)日期:2010
2、.3.25</p><p> 院 (部): 信息與電氣工程學(xué)院</p><p> 專 業(yè): 電氣工程與自動(dòng)化</p><p><b> 班 級(jí): </b></p><p><b> 姓 名: </b></p><p><b> 學(xué)
3、號(hào): </b></p><p><b> 指導(dǎo)教師: </b></p><p> 翻譯日期: 2011.3.10</p><p><b> 外文文獻(xiàn):</b></p><p> Designing Stable Control Loops</p><p>
4、 The objective of this topic is to provide the designer with a practical review of loop compensation techniques applied to switching power supply feedback control. A top-down system approach is taken starting with basic
5、 feedback control concepts and leading to step-by-step design procedures, initially applied to a simple buck regulator and then expanded to other topologies and control algorithms. Sample designs are demonstrated with Ma
6、th cad simulations to illustrate gain and phase margins and th</p><p> I. INTRODUCTION</p><p> Insuring stability of a proposed power supply solution is often one of the more challenging aspec
7、ts of the design process. Nothing is more disconcerting than to have your lovingly crafted breadboard break into wild oscillations just as its being demonstrated to the boss or customer, but insuring against this unfortu
8、nate event takes some analysis which many designers view as formidable. Paths taken by design engineers often emphasize either cut-and-try empirical testing in the laboratory or compu</p><p> II. STABILITY
9、DEFINED</p><p> Fig. 1. Definition of stability</p><p> Fig. 1 gives a quick illustration of at least one definition of stability. In its simplest terms, a system is stable if, when subjected
10、to a perturbation from some source, its response to that perturbation eventually dies out. Note that in any practical system, instability cannot result in a completely unbounded response as the system will either reach a
11、 saturation level – or fail. Oscillation in a switching regulator can, at most, vary the duty cycle between zero and 100% and while that may not</p><p> Another way of visualizing stability is shown in Fig.
12、 2. While this graphically illustrates the concept of system stability, it also points out that we must make a further distinction between large-signal and small-signal stability. While small-signal stability is an impor
13、tant and necessary criterion, a system could satisfy thisrt quirement and yet still become unstable with a large-signal perturbation. It is important that designers remember that all the gain and phase calculations we mi
14、ght per</p><p> Fig. 2. Large-signal vs. small-signal stability</p><p> III. FEEDBACK CONTROL PRINCIPLES</p><p> Where an uncontrolled source of voltage (or current, or power) is
15、 applied to the input of our system with the expectation that the voltage (or current, or power) at the output will be very well controlled. The basis of our control is some form of reference, and any deviation between t
16、he output and the reference becomes an error. In a feedback-controlled system, negative feedback is used to reduce this error to an acceptable value –as close to zero as we want to spend the effort to achieve. Typic</
17、p><p> The basis for feedback control is illustrated with the flow diagram of Fig. 3 where the goal is for the output to follow the reference predictably and for the effects of external perturbations, such as
18、input voltage variations, to be reduced to tolerable levels at the output Without feedback, the reference-to-output transfer function y/u is equal to G, and we can express the output asy ??Gu</p><p> With t
19、he addition of feedback (actually the subtraction of the feedback signal)</p><p> y ??Gu ??yHG</p><p> and the reference-to-output transfer function becomes</p><p> y/u=G/1+GH<
20、;/p><p> If we assume that GH __ 1, then the overall transfer function simplifies to</p><p><b> y/u=1/H</b></p><p> Fig. 3. Flow graph of feedback control</p><
21、;p> Not only is this result now independent of G,it is also independent of all the parameters of the system which might impact G (supply voltage, temperature, component tolerances, etc.) and is determined instead sol
22、ely by the feedback network H (and, of course, by the reference).Note that the accuracy of H (usually resistor tolerances) and in the summing circuit (error amplifier offset voltage) will still contribute to an output er
23、ror. In practice, the feedback control system, as modeled in Fig. 4,</p><p> Fig. 4. The general power regulator</p><p> IV. THE BUCK CONVERTER</p><p> The simplest form of the a
24、bove general power regulator is the buck – or step down – topology whose power stage is shown in Fig. 6. In this configuration, a DC input voltage is switched at some repetitive rate as it is applied to an output filter.
25、 The filter averages the duty cycle modulation of the input voltage to establish an output DC voltage lower than the input value. The transfer function for this stage is defined by</p><p> tON=switch on -ti
26、me</p><p> T = repetitive period (1/fs)</p><p> d = duty cycle</p><p> Fig. 5. The buck converter.</p><p> Since we assume that the switch and the filter components
27、 are lossless, the ideal efficiency of</p><p> This conversion process is 100%, and regulation of the output voltage level is achieved by</p><p> controlling the duty cycle. The waveforms of F
28、ig.6 assume a continuous conduction mode (CCM)</p><p> Meaning that current is always flowing through the inductor – from the switch when it is closed,</p><p> And from the diode when the swit
29、ch is open. The analysis presented in this topic will emphasize</p><p> CCM operation because it is in this mode that small-signal stability is generally more difficult</p><p> to achieve. In
30、the discontinuous conduction mode (DCM), there is a third switch condition in which the inductor, switch, and diode currents are all 5-4 zero. Each switching period starts from the same state (with zero inductor current)
31、, thus effectively reducing the system order by one and making small-signal stable performance much easier to achieve. Although beyond the scope of this topic, there may be specialized instances where the large-signal st
32、ability of a DCM system is of greater concern</p><p> There are several forms of PWM control for the buck regulator including,</p><p> ? Fixed frequency (fS) with variable tON and variable tOF
33、F</p><p> ? Fixed tON with variable tOFF and variable fS</p><p> ? Fixed tOFF with variable tON and variable fS</p><p> ? Hysteretic (or “bang-bang”) with tON, tOFF, and fS all v
34、ariable</p><p> Each of these forms have their own set of advantages and limitations and all have been successfully used, but since all switch mode regulators generate a switching frequency component and it
35、s associated harmonics as well as the intended DC output, electromagnetic interference and noise considerations have made fixed frequency operation by far the most popular.</p><p> With the exception of hys
36、teretic, all other forms of PWM control have essentially the same</p><p> small-signal behavior. Thus, without much loss in generality, fixed fS will be the basis for our discussion of classical, small-sign
37、al stability.</p><p> Hysteretic control is fundamentally different in that the duty factor is not controlled, per se. Switch turn-off occurs when the output ripple voltage reaches an upper trip point and t
38、urn-on occurs at a lower threshold. By definition, this is</p><p> a large-signal controller to which small-signal stability considerations do not apply. In a small signal sense, it is already unstable and,
39、 in a mathematical sense, its fast response is due more to feed forward than feedback.</p><p> REFERENCES</p><p> [1] D. M. Mitchell, “DC-DC Switching Regulator Analysis”, McGraw-Hill, 1988,&l
40、t;/p><p> DMMitchell Consultants, Cedar Rapids, IA, 1992(reprint version).</p><p> [2] D. M. Mitchell, “Small-Signal Mathcad Design Aids”, (Windows 95 / 98 version), e/j</p><p> BLO
41、OM Associates, Inc., 1999.</p><p> [3] George Chryssis, “High-Frequency Switching Power Supplies”, McGraw-Hill Book</p><p> Company, 1984.</p><p> [4] Ray Ridley, “A More Accurat
42、e Current- Mode Control Model”, Unitrode Seminar</p><p> Handbook, SEM-1300, Appendix A2.</p><p> [5] Lloyd Dixon, “Control Loop Design”, Unitrode Seminar Handbook, SEM-800.</p><p&g
43、t; [6] Lloyd Dixon, “Control Loop Design – SEPIC Preregulator Design”, Unitrode Seminar</p><p> Handbook, SEM-900, Topic 7.</p><p> [7] Lloyd Dixon, “Closing the Feedback Loop”, Unitrode Sem
44、inar Handbook, SEM-300.</p><p><b> 中文翻譯:</b></p><p><b> 控制電路設(shè)計(jì)</b></p><p><b> 摘要:</b></p><p> 本篇論文的寫作目的,是為給設(shè)計(jì)師們提供一個(gè)實(shí)際性的說明,那就是線性補(bǔ)
45、償技術(shù)在電源轉(zhuǎn)換與電流反饋操作中是如何應(yīng)用的。一個(gè)組織管理嚴(yán)密的系統(tǒng)電路需要一開始就有一個(gè)基礎(chǔ)的電流反饋操作理論的支持,并且通過一步步的設(shè)計(jì)步驟,從初步階段應(yīng)用到一個(gè)簡(jiǎn)單升壓調(diào)節(jié)器,然后再擴(kuò)展到其他的拓?fù)鋵W(xué)與算數(shù)控制學(xué)中去。matchad模擬器也驗(yàn)證了設(shè)計(jì)樣本中幅相裕度整定在分布設(shè)計(jì)中是存在的,并且還影響著實(shí)驗(yàn)的分析報(bào)告。</p><p><b> 一、簡(jiǎn)介:</b></p>
46、<p> 驗(yàn)證所提議的電源供給解決方案的穩(wěn)定性,一直就是電路設(shè)計(jì)過程中一個(gè)極具挑戰(zhàn)性的方面。最讓你感到窘迫的,并不是你最為得意之作的電路板正在實(shí)驗(yàn)的重要階段中,被突然闖入的無(wú)序振蕩所打亂,而是你實(shí)驗(yàn)恰恰驗(yàn)證了許多電路設(shè)計(jì)者感到最為頭疼的數(shù)據(jù)分析。電路設(shè)計(jì)師常常強(qiáng)調(diào),在實(shí)驗(yàn)室里要注重切換實(shí)驗(yàn)的實(shí)用價(jià)值,或者是以復(fù)雜的數(shù)學(xué)模式為電腦集成系統(tǒng)所需要的數(shù)據(jù)處理。然而這兩者的方向都是以電路設(shè)計(jì)的前提為基礎(chǔ)。于是,對(duì)反饋原理最基本的理
47、解將幫助我們?nèi)ザx接受性補(bǔ)償網(wǎng)系統(tǒng)的最小值計(jì)算范圍。</p><p><b> 二、穩(wěn)定性的界定:</b></p><p><b> 圖1 穩(wěn)定的定義</b></p><p> 圖1直接展示了至少一個(gè)關(guān)于穩(wěn)定性的界定。用最簡(jiǎn)潔的術(shù)語(yǔ)來說,如果一個(gè)電路系統(tǒng)是穩(wěn)定的,就算被從某些來源說產(chǎn)生的微擾所壓制時(shí),返回的微擾的也將
48、會(huì)一并抵消。需要注意的是,在任何實(shí)用電路中,不穩(wěn)定性不會(huì)導(dǎo)致一個(gè)完全無(wú)束縛的反應(yīng),這就如同電路既會(huì)達(dá)到飽和狀態(tài)——也會(huì)處于缺損狀態(tài)一樣。正在調(diào)節(jié)器轉(zhuǎn)化過程中的振蕩極有可能在零和百分之一百間的負(fù)荷周期中波動(dòng),并且這種變化不可能阻止失敗,它將最終制約不穩(wěn)定電路的回流電。</p><p> 圖2 展示的是另外一個(gè)設(shè)想的穩(wěn)定性。盡管該圖形象地展示了電路穩(wěn)定性的觀點(diǎn),但與此同時(shí),也指出了我們必須將大信號(hào)的穩(wěn)定性與小信號(hào)的
49、穩(wěn)定性嚴(yán)格區(qū)分開來。然而小信號(hào)的穩(wěn)定性是一個(gè)非常重要和非常需要的判斷標(biāo)準(zhǔn),一個(gè)電路也可以滿足這個(gè)要求,并且會(huì)與一個(gè)大信號(hào)的微擾一起變得不穩(wěn)定。重要的是,電路設(shè)計(jì)師們需要記得,所有我們可能執(zhí)行的幅相裕度整定計(jì)算僅僅只是確保了小信號(hào)的穩(wěn)定性。這些計(jì)算結(jié)果主要依靠——并且只適用于——線性電路,和一個(gè)轉(zhuǎn)換調(diào)節(jié)器——被定義為——非線性的電路。我們通過用圍繞小信號(hào)直流工作點(diǎn)周圍小信號(hào)的微擾,來演算我們的分析結(jié)果,去解決這個(gè)迷團(tuán)。這之中的具體差別將會(huì)
50、在接下來的設(shè)計(jì)過程的有關(guān)探討來說明。</p><p> 圖2 強(qiáng)信號(hào)和弱信號(hào)</p><p> 三、反饋電流控制原理:</p><p> 展示的是一個(gè)最基本的調(diào)節(jié)器,在這里,不受控制的電壓來源(或者電流,或者功率)將會(huì)被應(yīng)用到電路的輸入,且在輸出過程中被這個(gè)不受控制的電壓(電流或者功率)的預(yù)期值完全的掌控。電流控制的基礎(chǔ)是一些基準(zhǔn)電壓的結(jié)構(gòu),任何在輸出電流和基
51、準(zhǔn)電壓之間的偏差都是會(huì)導(dǎo)致電路的錯(cuò)誤。在一個(gè)反饋操作電路中,負(fù)反饋回流電是用來減少在可接受的標(biāo)準(zhǔn)內(nèi)這種錯(cuò)誤——就如我們希望能從一開始付出努力,一直堅(jiān)持到最后能成功一樣。然而,按照典型的案例來說,我們也希望讓錯(cuò)誤不會(huì)那么快的發(fā)生,但是回流電控制電路本身就存在著頻率響應(yīng)與電路穩(wěn)定性的互換。回流電路的頻率響應(yīng)越多,不穩(wěn)定的危險(xiǎn)性就越大。</p><p> 在這一點(diǎn)上我們應(yīng)該注意,另外一個(gè)控制方法——前反饋。通過前反饋
52、的控制,一個(gè)控制信號(hào)將被直接地發(fā)展到去回應(yīng)一個(gè)輸出波動(dòng)或者微擾中。前反饋沒有回流電那么精準(zhǔn),因?yàn)闄z測(cè)輸出電流不是那么復(fù)雜難懂,然而,無(wú)法否認(rèn)的是,等待一個(gè)輸出電流的錯(cuò)誤信號(hào)會(huì)被發(fā)現(xiàn),而且前反饋控制無(wú)法產(chǎn)生不穩(wěn)定性。需要清楚表明的是,典型的前反饋控制將不像只有一個(gè)電壓調(diào)節(jié)器的控制線路那么有效,但是前反饋的控制經(jīng)常被用于和反饋一起去加快調(diào)節(jié)器對(duì)動(dòng)態(tài)輸入變動(dòng)的響應(yīng)頻率。</p><p> 圖3中的電流圖闡述了反饋控制
53、的基礎(chǔ),目標(biāo)就是為了輸出功率能跟著可以預(yù)測(cè)的基準(zhǔn)電壓,為了將外部微擾的影響,如同輸出功率的變動(dòng)一樣,能會(huì)被減少到輸出功率所能接受的等級(jí)上。</p><p><b> 圖3 反饋控制流圖</b></p><p> 如果沒有反饋電,基準(zhǔn)電壓到輸出功率的轉(zhuǎn)換函數(shù)y/u就跟G是一樣的,我們可以這樣表達(dá)輸出功率:</p><p><b>
54、 y=Gu</b></p><p> 另外反饋電流(實(shí)際上是反饋信號(hào)的減法):</p><p> y ? Gu ? yHG</p><p> 之后r基準(zhǔn)電壓與輸出功率的轉(zhuǎn)換函數(shù):</p><p><b> Y=G</b></p><p><b> u=1 ? GH&
55、lt;/b></p><p> 如果我們假設(shè)GH=1,那么整體的轉(zhuǎn)換函數(shù)就是:</p><p><b> y/u=1/h</b></p><p> 這個(gè)函數(shù)不僅使得G現(xiàn)在成為獨(dú)立,它還使所有的電路參數(shù)都變得獨(dú)立,這這可能會(huì)影響G(供給功率、溫度、元件公差,等等)并且被只被回流電路H(并且,理所當(dāng)然的,被基準(zhǔn)電壓作用)所代替來決定它。
56、值得一提的是,H的準(zhǔn)確性(通常稱為電阻的公差)和電路的總和(錯(cuò)誤放大補(bǔ)償功率)將繼續(xù)造成輸出電流的錯(cuò)誤。在實(shí)際中,反饋控制電路,如圖4的模型所示,如此設(shè)計(jì)是為了使G :H和GH=1的振動(dòng)頻率能越大范圍越好并且不會(huì)產(chǎn)生任何不穩(wěn)定性。</p><p> 我們可以進(jìn)一步的改良概括功率調(diào)節(jié)器就像圖4所見到的一樣。在這里我們有單獨(dú)分開的功率系統(tǒng)進(jìn)去到兩個(gè)板塊——功率段和控制電路。功率段處理電流的負(fù)荷,并且功率段通常是大、
57、重、經(jīng)歷廣闊的溫度范圍波動(dòng)。它的轉(zhuǎn)換功能被定義為,大信號(hào)現(xiàn)象,通常在最穩(wěn)定的分析結(jié)果中進(jìn)行模擬,就像在負(fù)荷周期中的兩極轉(zhuǎn)換一樣。輸出電流過濾器被當(dāng)做為線性板塊??刂齐娐吠ǔS幸粋€(gè)增長(zhǎng)板塊——錯(cuò)誤發(fā)大器——和寬脈沖波調(diào)幅器所組成,用來定義電壓轉(zhuǎn)換。</p><p><b> 圖4 一般電源穩(wěn)壓</b></p><p> 四、降壓轉(zhuǎn)換器: 上述一般動(dòng)力的最簡(jiǎn)單
58、形式降壓穩(wěn)壓器- 或降壓- 拓?fù)渌墓β始?jí),如圖6所示在這配置,直流輸入電壓起動(dòng),有些重復(fù)率,因?yàn)樗沁m用于輸出過濾器。該過濾器的占空比平均輸入電壓的調(diào)制建立輸出直流電壓比輸入值低。變量的傳遞函數(shù)定義如下其中</p><p><b> tON為開關(guān)時(shí)間</b></p><p> T 為重復(fù)周期(頻率的倒數(shù))</p><p><b>
59、; D為占空比</b></p><p><b> 圖5.降壓轉(zhuǎn)換器</b></p><p> 由于我們假設(shè)開關(guān)和過濾器組件是無(wú)損的,理想的效率這個(gè)轉(zhuǎn)換過程是100%,與規(guī)制輸出電壓的水平是通過控制占空比。在波形圖。6假設(shè)連續(xù)傳導(dǎo)模式(CCM)這意味著電流始終流經(jīng)當(dāng)它從封閉開關(guān) - 電感從二極管當(dāng)開關(guān)處于打開狀態(tài)。該在這個(gè)主題提出的分析會(huì)強(qiáng)調(diào)CCM工作
60、,因?yàn)檎窃谶@一模式小信號(hào)穩(wěn)定,一般比較困難來實(shí)現(xiàn)。在非連續(xù)導(dǎo)通模式(DCM)的,有三分之一的開關(guān)狀態(tài),其中電感器,開關(guān)和二極管電流都為零。每個(gè)開關(guān)周期開始從同一狀態(tài)(零電感電流),從而有效地該系統(tǒng)減少了一個(gè)順序,使小信號(hào)性能穩(wěn)定,更容易實(shí)現(xiàn)。雖然超出了本專題的范圍,可能有專門的情況是,大信號(hào)的DCM系統(tǒng)的穩(wěn)定性是更令人關(guān)注的比小信號(hào)穩(wěn)定。 也有幾種形式的PWM控制降壓穩(wěn)壓??器,包括?固定頻率和開關(guān)變量?修正開的變量和變量
61、頻率關(guān)變量?可變開和變量頻率固定關(guān)變量?遲滯與開、關(guān)頻率變量, 所有的變量和fS這些形式各有各的一套優(yōu)勢(shì)和局限性,并已全部成功使用,但因?yàn)樗械拈_關(guān)模式監(jiān)管機(jī)構(gòu)產(chǎn)生的開關(guān)頻率組件及其相關(guān)諧波以及如預(yù)期的直流輸出,電磁干擾和噪聲問題作出迄今為止最固定頻率操作受歡迎。 隨著滯后,所有其</p><p><b> 參考文獻(xiàn)</b></p><p>
62、[1]米切爾四米,“DC - DC開關(guān)調(diào)節(jié)分析”,麥格勞希爾,1988年,DMMitchell顧問,錫達(dá)拉皮茲,保險(xiǎn)業(yè)監(jiān)督,1992年(重印版)。</p><p> [2]四米米切爾,“小信號(hào)的Mathcad設(shè)計(jì)輔助“,(視窗95 / 98版),電子/日本布盧姆Associates公司,1999。</p><p> [3]喬治Chryssis,“高頻交換式電源供應(yīng)“,麥格勞希爾預(yù)訂公司
63、,1984。</p><p> [4]雷里德利“一個(gè)更精確的電流模式控制模式“,Unitrode研討會(huì)手冊(cè),掃描電鏡- 1300,附錄A2。</p><p> [5]勞埃德迪克遜,“控制回路設(shè)計(jì)“,Unitrode研討會(huì)手冊(cè),掃描電鏡- 800。</p><p> [6]勞埃德迪克遜,“控制回路設(shè)計(jì) -SEPIC型前置穩(wěn)壓器設(shè)計(jì)“,Unitrode研討會(huì)手冊(cè),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣專業(yè)畢業(yè)論文外文翻譯
- 交通燈控制電路設(shè)計(jì)畢業(yè)論文
- 變頻器控制電路設(shè)計(jì) 畢業(yè)論文
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 汽車尾燈控制電路設(shè)計(jì)畢業(yè)設(shè)計(jì)論文(含外文翻譯)
- 畢業(yè)論文——汽車尾燈控制電路設(shè)計(jì)
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯9
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯9
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯7
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯 10
- 花房溫度、光照度控制電路設(shè)計(jì)畢業(yè)論文
- 船舶電氣專業(yè)畢業(yè)論文
- 畢業(yè)設(shè)計(jì)--臥式車床電氣控制電路設(shè)計(jì)
- 畢業(yè)論文(設(shè)計(jì))-交通燈數(shù)字控制電路設(shè)計(jì)
- 電氣控制電路設(shè)計(jì)例題01
- 建筑電氣專業(yè)畢業(yè)論文--小區(qū)電氣設(shè)計(jì)
- 本科畢業(yè)論文-----汽車尾燈控制電路設(shè)計(jì)
- 電氣專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--防雷接地
- 畢業(yè)設(shè)計(jì)———自動(dòng)門電氣控制電路設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論