2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩54頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、曲阜師范大學(xué)碩士學(xué)位論文非線性方程邊值問題解及多解的存在性姓名:高巖申請學(xué)位級別:碩士專業(yè):基礎(chǔ)數(shù)學(xué)指導(dǎo)教師:張克梅20050401曲阜師范大學(xué)碩士學(xué)位畢業(yè)論文定理131若(A1)一(山)成立阮=盧(£),oo=a(t),使得則存在單調(diào)序列(風(fēng)(£)),a。(t)),其中0驄風(fēng)(t)2p(t),0驄on(£)2一(t)在J上一致成立,且P,一是周期邊值問題(11)介于。及盧之間的極小,極大解注131本文把【18201的一階周期邊值問題的

2、解的存在性推廣到了二階周期邊值問題注132許多作者(參見文[1013])在oS盧的情況下給出迭代得到極大,極小解,而本文在盧≤a的情況下給出比較結(jié)果通過迭代得到極大,極小解,因而在本質(zhì)上有很大的改進(jìn)第二節(jié)中,本文首次運(yùn)用混合單調(diào)算子不動點的兩點拉伸型條件,討論了奇異二階邊值問題:卜u”Ⅻo),∽)“砷“∞,(21)Icru(o)一盧“’(o):0,,yu(1)Ju’(1)=0、。在“osVo和uo≤”o兩種情況下正解的存在性假設(shè)下列條件

3、成立:(B1)a,b:(0,1)_【0,oo)連續(xù),且o,b在端點具有奇異性;(B2)存在to∈(0,1),使a(to)0,b(to)0且詹G(s,s)(o(s)十6(5))幽0定理231若下列條件成立:(C1)f:[0,o。)_[o,o。)連續(xù),嚴(yán)格遞增,且liⅡk一f(u)=oo;(C2)g:[0,∞)_[o,o。)連續(xù)且遞減;(島)jm,M0,使得,(M)≥羔州刮耵1,,(m)至彘I|e||~一g(o);其中B=supb0,£。G

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論